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ABSTRACT

After several years of experience the Theory of Intelligent Machines has been re-

formulated analytically to reflect the present state of the art. The functions of an

Intelligent Machines are executed by Intelligent Controls. The Principle of Increasing

Precision with Decreasing Intelligence is used to form a hierarchical structure of the

control systems. Distributed Intelligence in compatible with such a structure when

it is used for teams of intelligent machines or cooperating coordinators within the

machine. The three levels of the Intelligent Control, e.g., the Organization, Coordi-

nation and Execution Levels are described as originally conceived. New designs as

Neural-nets for the organization level and Petri- nets for the coordination level are

included. Application to Intelligent Robots for space exploration has been focused in

this work.



1 INTRODUCTION

Several researchers have made a considerable effort to develop viable theories for

Intelligent Machines and create working models to implement such a theories (Albus

1985, Meyste11986, Pax) 1986, Saridis 1985, Zames 1979, etc.), in the past fifteen years.

Such machines were designated to perform anthropomorphic tasks with minimum

interaction with a human with potential applications on robotic systems designed to

operate in remote, inaccessible, hazardous, unfamiliar or other environments as need

appeared.

Since the task was enormous and the available technologies rather limited, the

results of such an effort have been meager. The theoretic efforts that have come into

the picture to reinforce the development of Intelligent Machines have taken two dis-

tinct directions: the logic-based approach (Nielsen-Genesereth 1988) and the analytic

approach (Saridis 1988, Meystel 1986).

The results on the analytic approach, which concerns this particular paper, have

been reported regularly by the author (Saridis 1977, Saridis 1979, Saridis 1983, Saridis

1985c, Saridis 1988) and have reached a level of maturity both theoretically and

experimentally. A summary of the work produced is given in the next section.

In the past few years, new methodologies and new techniques llke Neural-nets,

Petri-nets, Boltzmann machines etc., have appeared in the literature and have pro-

vided new tools for the analytic formulation of the theory of Intelligent Machines.

The further development and adaptation of such tools, along with the better under-

standing of the process led to modifications and refinements of the theory aimed to

strengthen, simplify and integrate the proposed design of Intelligent Machines.

The refinements introduced herein are due to the better understanding of some of

the basic concepts of the Intelligent Machines, e.g., the Principle of Increasing Preci-

sion with Decreasing Intelligence (IPDI), the ability to develop Boltzmann Machines

and Petri-Nets as realizations of Inference Engines and Linguistic Decision Schemata,

respectively, and the use of entropy measures for the evaluation of the performance

at every level of the machine.

A review of the analytic formulation of the Intelligent Machines is given in the next

section, followed by a set of pertinent definitions and a discussion on the principle

of IPDI. A brief explanation of the development of the Boltzmann machine as an

inference engine for the organization level is next. The following section presents

details on the three levels of the Intelligent Machine with introduction of Neural-nets



to the organization level and Petri-nets to the coordination level. The next section

places the Intelligent Machine in a Distributed Intelligence environment, followed by

applications, discussions and conclusions.

2 REVIEW OF THE ANALYTIC FORMULA-

TION OF INTELLIGENT CONTROLS

Intelligent Machines require the use of "generalized" control efforts in order to perform

intelligent functions such as simultaneous utilization of a memory, learning, or mul-

tilevel decision making in response to "fuzzy" or qualitative commands. Intelligent

Controls have been developed by Saridis (1977, 1983) to implement such functions.

For purposes of consistency of definition along the machine, "generalized" control is

defined in a more liberal way as:

The process of makin_ a system do what you want it to do.

Intelligent Control, utilize the results of cognitive systems research effectively with

various mathematical programming control techniques.

Cognitive systems have been traditionally developed as part of the field of Artificial

Intelligence to implement, on a computer, functions similar to ones encountered in

human behavior (Albus 1975, Minsky 1972, Winston 1977, Nilsson 1969, Pao 1986).

Such functions as speech recognition and analysis, image and scene analysis, data

base organization and dissemination, learning and high-level decision making, have

been based on methodologies emanating from a simple logic operation to advanced

reasoning as in pattern recognition, linguistic and fuzzy set theory. The results have
been well documented in the literature.

Various pattern recognition, linguistic or even heuristic methods have been used

to analyze and classify speech, images or other information coming in through sensory

devices as part of a cognitive system (Birk and Kelley 1981). Decision making and

motion control were performed by a dedicated digital computer using either kinematic

methods, like trajectory tracking, or dynamic methods based on compliance, dynamic

programming or even approximately optimal control (Saridis and Lee 1979).

The theory of Intelligent Control systems, proposed by Saridis (1979) combines

the powerful high-level decision making of the digital computer with advanced math-

ematical modeling and synthesis techniques of system theory with linguistic methods
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of dealingwith impreciseor incompleteinformation. This producesa unified approach
suitable for the engineeringneedsof the future. The theory may be thought of as
the result of the intersection of the three major disciplinesof Artificial Intelligence,
Operations Research,and Control Theory as depicted in Figure 1. This researchis
aimed to establish Intelligent Controls as an engineeringdiscipline, and it plays a
central role in the designof Intelligent Autonomous Systems.

Intelligent Control can be consideredas a fusion between the mathematical and
linguistic methods and algorithms applied to systemsand processes.They utilize the
resultsof cognitivesystemsresearcheffectively with various mathematical program-
ming control techniques.

The control intelligenceis hierarchically distributed according to the Principle of
Precisionwith DecreasingIntelligence(IPDI), evident in all hierarchicalmanagement
systems,and it is further discussedin a future section (Saridis 1988b).The resulting
structure is composedof threebasiclevelsof controls, eachlevelof which may contain
more than one layer of tree-structured functions (Saridis 1979)(SeeFigure 2):

1. The organization level.

2. The coordination level.

3. The execution level.

The functions involved in the upper levels of an intelligent machine are imitating

functions of human behavior and may be treated as elements of knowledge-based

systems. Actually, the activities of planning, decision making, learning, data storage

and retrieval, task coordination, etc., may be thought of as knowledge handling and

management. Therefore, the flow of knowledge in an intelligent machine may be

considered as the key variable of such a system.

Knowledge flow in an intelligent machine represents respectively:

1. Data Handling and Management.

2. Planning and Decision performed by the central processing units.

3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.
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Subjective probabilistic modelsare assignedto the individual functions. Their
entropies may be evaluated for every task executed. This provides an analytical

measure of the total activity.

Artificial Intelligence methods, using among other logic functions have been used

to implement Intelligent Machines (Albus 1975, Meystel 1985, Nielsen Genesereth

1988). However, they lack that rigor and precision that analytic techniques provide.

Nevertheless new methodologies have been adapted to analytic models to perform

tasks at the various levels of an Intelligent Machine.

Moed and Saridis (1990), proposed a neural net approach to perform reasoning,

planning and decision making in the organization level of an Intelligent Machine.

A Boltzmann machine, suitable for the discrete binary state model of this particular

level, is a natural device for organizing actions and rules necessary for the execution of

a given command, regardless of the particular world model the machine is inhabiting.

Wang and Saridis (1988) proposed a Petri-net transducer to implement the Lin-

guistic Decision Schemata (Saridis and Graham 1984), which serve as model coordi-

nators and decision makers at the machine's coordination level. These devices set up

the communication protocols, with the help of small real-time memories, and serve

apply in real time the rules generated by the organization level to properly generate

and sequence the subtasks in the particular environment of the machine, in order to

execute the given original command.

Finally, Saridis (1988a) was able to reformulate the system control problem to

use entropy as a control measure and therefore integrate all the hardware activities

associated with the Intelligent Machine with the other levels regardless of the disci-

pline they belong to. Thus, vision coordination, motion control, path planning, force

sensing, etc., in a robot paradigm, may be integrated into the pertinent actions of

the machine and evaluated by common entropy functions.

Since all levels of a hierarchical intelligent control can be measured by entropies

and their rates, then the optimal operation of an "intelligent machine" can be obtained

through the solution of mathematical programming problems.

Another development of this theory the structure of the "nested hierarchical"

systems (Meystel, 1986). Even when the hierarchy is not tree-like, still using hierarchy

is beneficial since the hierarchy of resolutions (errors per level) helps to increase the

effectiveness of the system under limited computing power Which is important to

mobile systems.
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The various aspectsof the theory of hierarchically intelligent controls may be
summarizedasfollows:

The theory of intelligent machines may be postulated as the mathematical

problem of findin$ the risht sequence of decisions and controls for a system

structured accordin$ to the principle of increasin_ precision with

decreasing intelligence (constraint) such that it minimizes its total entropy.

The above analytic formulation of Intelligent Machines as a hierarchically intelli-

gent control problem is based on the use of entropy as a meansure of performance at

all the levels of the hierarchy. It has many advantages because of the tree-like struc-

ture of the decision making process, and brings together functions that belong to a

variety of disciplines. The complete development of this theory and its integration

with the other theoretical issues of the Intelligent Autonomous System is the main

task of this paper.

3 SOME DEFINITIONS AND THE IPDI

3.1 Definitions

It remains to investigate the general concepts of Intelligent Control Systems which

pertain to the fundamental functions Intelligent Machines. Such are the notions of

Machine Knowledge, its Rate and Precision.

Definition 1. Machine Knowledge is defined to be the structured information

acquired and applied to remove ignorance or uncertainty about a specific task

pertaining to the Intelligent Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot be used

as a variable to execute a task. Insteady, the Rate of Machine Knowledge is a suitable

variable.

Definition 2. Rate of Machine Knowledge is the flow of knowledge through an

Intelligent Machine.



Intelligence is defined by the American Heritage Dictionary of the English Lan-

guage (1969) as the capacity to acquire and apply knowledge.

In terms of Machine Intelligence, this definition may be modified to yield:

Definition 3. Machine Intelligence (MI) is the set of actions or rules which op-

erates on a data-based (DB) of events to produce flow of knowledge (R).

On the other hand, one may define Precision as follows:

Definition 4. Imprecision is the uncertainty of execution of the various tasks of

the Intelhgent Machine.

and

Definition 5. Precision is the complement of Imprecision, and represents the

complexity of a process.

Analytically, the above relations may be summarized as follows:

Knowledge (K) representing a type of information may be represented as

K = -a - Inp(K) (1)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies the following

e.,cpression in agreement with Jaynes' Principle of Maximum Entropy (1957):

p(K) = e-"-g; a = In fx e-Kdx (2)

The Rate of Knowledge R which is the main variable of an intelligent machine
with discrete states is defined over a fixed interval of time T:

K

T

It was intuitively thought (Saridis 1983), that the Rate of Knowledge must satisfy

the following relation which may be thought of expressing the principle of Increasing

Precision with Decreasing Intelli_;ence.



(MI):(DB)---.(R) (3)

A special case with obvious interpretation is, when R is fixed, machine intelligence is

largest for a smaller data base, e.g., complexity of the process. This is in agreement

with Vamos' theory of Metalanguages (1986).

It is interesting to notice the resemblance of this entropy formulation of the Intelli-

gent Control Problem with the e-entropy formulation of the metri theory of complexity

originated by Kolomogorov (1956) and applied to system theory by Zames (1979).

Both methods imply that an increase in Knowledge (feedback) reduces the amount

of entropy (e-entropy) which measures the uncertainty involved with the system.

An analytic formulation of the above principle derived from simple probabilistic

relation among the Rate of Knowledge, Machine Intelligence and the Data Base of

Knowledge, is presented in the next section. The entropies of the various functions

come naturally into the picture as a measure of their activities.

3.2 The Analytic Formulation of IPDI

In order to formulate mathematically the concepts of knowledge-based systems, one

must consider the state space of knowledge _o with states s_,i = 1,2,...n. They

represent the state of events at the nodes of a network defining the stages of a task
to be executed.

Then knowledge between two states is considered as the association of the state

si with another state sj and is expressed as

1 ,

K_j = -_wijs_s j (4)

where wij are state transition coefficients, which are zero in case of inactive transmis-
sion.

Knowledge at the state of si is the association of that stat with all the other active

states sj and is expressed as

I

Ki = _ _ wOsis j
3

Finally, the total knowledge of a system is considered as

(5)



S

K = _ _. __,. wi.is,sj (6)
t 3

and has the form of energy of the underlying events. The rate (flow) of knowledge is

the derivative of knowledge and for the discrete state space f/s is defined respectively

Ki_ K_ K
J = ' P"= 7 ' R = 7 (7)

where T is a fixed time interval.

Since knowledge was defined as structured information, it can be expressed by a

probabilistic relation similar to the one given by Shannon, and expressed for each

level by equation (1):

lnp(Ki) = -c_- K, (8)

which yields a probability distribution satisfying Jaynes' Principle of Maximum En-

tropy (Jaynes 1957). For E{K} = Const.:

p(K,) = e-"I-K'; e_' = _ eK'
i

The rate of knowledge is also related probabilistically by considering Ki = R_T.

p(R,) = p(niT) = e -'l-Tn_ = e-"l-"'n' (9)

The principle of Increasing Precision with Decreasing Intelligence is expressed

probabilistically by

PR(MI, DB) = PR(R) (10)

where MI is the machine intelligence and DB is the data base associated with the task

to be executed and represents the complexity of the task which is also proportional

to the precision of execution. The following relation is obtained by conditioning and

taking the natural logarithms:

Inp(MI/DB) + lnp(DB) = Inp(R)

Taking the expected value on both sides

(11)

H(MI/DB) + H(DB) = H(R) (12)
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whereH(x) is the entropy associated with x. For a constant rate of knowledge which

is expected during the conception and execution of a task increase of the entropy

of DB requires a decrease of the entropy of MI for the particular data base, which

manifests the IPDI. IF MI is independent of DB then

H(MI) + H(DB)= H(R) (13)

In the case that p(MI) and p(DB) satisfy Jaynes' Principle as p(R) does, where

p(MI/DB) = ea_-'_Mz_B

p(DB) = e"3-'3rib

where ai and #1 = 2,3 are appropriate constants.

Then the entropies are rewritten as

(14)

and if

then

- _2 - #2MIDB -- _3 -- #3DB = -_1 - #IR

#2 #3
(2 1 = Or2 Jr 013 _/2 = _ , _3 =

#i #i

(i5)

"y2MIDB + %DB = R (16)

which represents a specific but more explicit version of the Principle of Increasing

Precision with Decreasing Intelligence. A detailed proof of the Principle is given in

Saridis (1989).

This Principle is applicable both across one level of the Intelligent Hierarchy as

well as throught the levels of the Hierarchy, in which case the flow R represents the

throughput of the system in an information theoretic manner. The partition law of

information rate applies naturally to such a system (Saridis 1985c).

The entropy of DB may be related to e-entropy as follows: A system requiring

certain (n) level of precision takes n-times the data base DB required for a simple

precision. But

H(nDB) = Elnn + EInDB (17)

where E{lnn} is the e-entropy associated with the complexity of execution. As case

study demonstrating the validity of the above is given in Saridis and Valavanis (1988).
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4 THE ANALYTIC STRUCTURE OF THE IN-

TELLI GENT MA CHINE

In order to implement an Intelligent Machine on analytic foundations, the theory

of Intelligent Control has been developed by Saridis (1979), and briefly discussed in

Section 2. This theory assigns analytic models to the various levels of the machine

and improve them through a generalized concept of selective feedback.

The Intelligent Control System is composed of three levels in decreasing order of

intelligence and increasing order of precision as stipulated by the IPDI. However, with

the better understanding of the basics, new methodologies axe proposed to analytically

implement the various functions, without significantly changing the models at each
level.

The Organization Level is designed to organize a sequence of abstract actions or

rules from a set of primitives stored in a long-term memory regardless of the present

world model. In other words it serves as the generator of the rules of an Inference

Engine by processing (intelligence) high level of information, for reasoning, planning

and decision making. This can be accomplished by a two level Neural-net, analytically

derived as a Boltzmann machine by Saxidis and Moed (1988 and 1990).

The Coordination Level is an intermediate structure serving as an interface be-

tween the organization and execution levels. It deals with real- time information of

the world by generating a proper sequence of subtasks pertinent to the execution of

the original command.

It involves coordination of decision making and learning on a short term memory,

e.g., a buffer. It utilizes Linsuistic Decision Schemata with learning capabilities de-

fined in Saxidis and Graham (1984), assigned subjective probabilities for each action.

The respective entropies may be obtained directly from these subjective probabilities.

Petri Net Transducers have been investigated by Wang and Saxidis (1988), to imple-

ment such decision schemata. In addition, Petri-nets provide the necessary protocols

to communicate among the various coordinators, in order to integrate the activities

of the Machine. Complexity functions may be used for real-time evaluation.

The Execution Level performs the appropriate control functions on the processes

involved. Their performance measure can also be expressed as an entropy, thus uni-

fying the functions of an Intelligent Machine.

Optimal control theory utilizes a non-negative functional of the states of a system

11



in the state space,and a specific control from the set of all admissible controls, to
definethe performancemeasurefor someinitial conditions, representingageneralized
energyfunction. Minimization of the energyfunctional yields the desiredcontrol law
for the system.

The Principle of IPDI is applicable at every level of the Machine, reaffirming its
universal validity. However, the coordination may serveas a salient example of its
application wherethe intelligenceprovidedby the organization levelasa setof rules is
applied to the databaseprovided by the execution level to produceflow of knowledge.

A moredetailed description of the analytic functions of eachlevel is given in the
sequel.

4.1 The Neural-Net Based Organization Level

The function of the organizer, the highest level of the hierarchy of Intelligent Controls,

is based on several AI (knowledge based) concepts forming the foundations of Machine

Intelligence. These concepts translated into probabilistic models form the functions of

representation and reasoning, planning, decision making, long-term memory exchange

and learning through feedback to set up a task in response to some outside command

(Figure 3). The probabilistic model generated provides the mechanism to select the

appropriate task for the appropriate command. The principle followed here is that

instead of task decomposition a collection of tasks is generated from a list of primitives

stored in the memory and matched against the input command applied.

To specify analytically the model of the organizer, it is essential to derive the

domain of the operation of the machine for a particular class of problems (Saridis

and Valavanis 1988). Assuming that the environment is known, one may define the

following functions on the organization level:

a) Machine Representation and Abstract Reasoning, (RR) is the association of the

compiled command to a number of activities and/or rules. A probability func-

tion is assigned to each activity and/or rule and the Entropy associated with

it is calculated. When rules are included one has active reasoning (inference

engine).

In order to generate the required analytic model of this function the following
sets are defined:

12



The set of commands C = {cl, e2, ..., e._} in natural language, is received by the

machine as inputs. Each command is compiled to yield an equivalent machine

code explained in the next section.

The task command of the machine contains a number n of independent events.

The events E = {el, e2,..., e_} are individual primitive objects or actions ei

stored in the long-term memory and repesenting primitive tasks to be executed.

The task domain indicates the capabilities of the machine. Events represent the

nodes of the Neural-net.

Activities A, are groups of events concatenated to define a complex task; e.g.,

A234 = {e2, e3, e4}. If the events are ordered then we have an ordered activity.

A set of random variables X = {zl,... x,,} representing the state of events is

associated with each individual event ei. If the random variable xi is binary (ei-

ther 0 or 1), it indicates whether an event ei is inactive or active, in a particular

activity and for a particular command. If the random variables z_ are continu-

ous (or discrete but not binary) over [0,1], they reflect a membership function

in a fuzzy decision making problem. At this point, the zi's are considered to be

binary.

A set of probabilities P associated with the random variables X is defined as
follows.

P = {p, = Prob[z, = 1]}

The probabilities P are known at the beginning of the representation stage. In

order to reduce the problem of dimensionality a subset of events is defined for

the given command ck.

Sk = {ei;p_ > a} C E

b) Machine Planning, (P), is ordering of the activities.

The ordering is obtained by properly concatenating the appropriate abstract

primitive events ei C Sk for the particular command ck, in order to form the

right abstract activities (sentences or text).

13



The ordering is generated by a Boltzmann machine which measures the average

flow of knowledge from node j to node i on the Neural-net by

1 1

Rq = _E{wiixlxj} = "_wqplpj >_ 0
(18)

The probabihty due to the uncertainty of knowledge flow into node i, is calcu-

lated as in (9):

where

• !

wlj _> 0 is the interconnection weight between nodes i and j

wq = 0

ai > 0 is a probability normalizing factor.

The average Flow of Knowledge R_ into node i, is:

1P_ = a, + E{_ wqz,z¢} = a, + -_ __, wqp,pj
J 3

with probability P(P_), (Jaynes' Principle):

1

P(R,) = exp[-oq - _ _ wijp,pj].

The Entropy of Knowledge Flow in the machine is

(19)

1

H( R) = - _ P( Ri)in[P( R_)] = _"_(cq +-" _ wijpip.i)exp[-cq- 1/2 Z wijPiPj.]
• i 2 j j

(20)
The normalizing factor cq is such that 1/2" < P(Rq) < 1.
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C.

d.

!The entropy is maximum when the associated probabilities are equal, p(R/) = 2-

with n the number of nodes of the network. By bounding p(Ri) from below by
1

2-_ one may obtain a unique minimization of the entropy corresponding to the

most like sequence of events to be selected.

Unlike the regular Boltzmann machines, this formulation does not remove cri

when Pi = 0. Instead, the machine operates from a base entropy level oq e-_

defined as the Threshold Node Entropy which it tries to reduce (Saridis and

Moed, 1988).

Machine Decision Making, (DM) is the function of selecting the sequence with

the largest probability of success.

This is accomplished through a search to connect a node ahead that will mini-

mize the Entropy of Knowledge Flow at that node:

1 1

H(RI) = (ai + -_ E wi.ipipj) exp[-ai - -_ E w,jpipj]
3 3

A modified genetic algorithm, involving a global random search, has been pro-

posed by Moed and Saridis (1990) as a means of generating the best sequence of

events that minimized the uncertainty of connections of the network expressed

by the entropy (20).

This algorthim, proven to converge globally compared favorably with other

algorithms like the Simulated Annealing and the Random Search. The DM

process is illustrated in Figure 4.

Machine Learning, (ML) (Feedback). Machine Learning is obtained by feed-

back devices that upgrade the probabilities pl and the weights wij by evaluating
the performance of the lower levels after a successful iteration.

For Yk representing either Pi or wii, corresponding to the command ck, the

upgrading algorithms are:

yk(tk + 1) = y,(t_) + #k(tk + 1)[_(tk + 1) -- yk(tk)]

Jk(t_ + 1) = J_(tk) + 3'(tk + 1)[V_.(t_ + 1) - Jk(t_)] (21)

15



where Jk is the performance estimate, V_. its observed value and

Pl : _k(tk + 1)= x(tk)

1 if J= "_Jwli : (k(_k + 1) = 0 otherwise (22)

e. Memory Exchange (ME), is the retrieval and storage of information from the

Ions-term memory, based on selected feedback data from the lower levels after

the completion of the complex task.

The above functions may be implemented by a two level Neural-net, of which

the nodes of the upper level represent the primitive objects eoi and the lower level

of primitive actions relating the objects e,i of a certain task. The purpose of the

organizer may be realized by a search in the Neural-net to connect objects and actions

in the most likely sequence for an executable task.

4.2 The Coordination Level and Petri Net Transducers

The coordination level is an intermediate structure serving as an interface between

the organization and the execution level. It is essential for dispatching and commu-

nicating organizational information to the execution level. Its objective is the actual

formulation of the control problem associated with the most probable complete and

compatible plan generated by the organization level and based on real-time acquired
information about the world model.

The functions of the coordination level are summarized as follows:

a. Dispatching of tasks requested by the organization level.

b. Identification and of the current environment.

c. Real-time decision-making.

d. Data transfer and communication.

e. Use of formal languages.

16



f. Learning (Feedback)

g. Interfacing.

The coordination level is composedof a dispatcher and a number of specialized

coordinators (Figure 5). Specific hardware (execution devices) from the execution

level is associated with each coordinator. These devices execute well defined tasks

when a command is issued to them by their corresponding coordinator (Saridis and

Valavanis 1988). The dispatcher serves as both the communicator of information from

the organization level to the coordinators and on-line exchange of data among the

coordinators. A Petri-net formulation of these activities has been recently proposed

by Wang and Saridis (1988).

Petri-nets have been proposed as devices to communicate and control complex

heterogenous processes. These nets provide a communication protocol among stations

of the process as well as the control sequence for each one of them (Peterson 1977).

Abstract task plans, suitable for many environments are generated at the organi-

zation level by a grammar:

G=(N, Eo, P,S)

where

N = {S, M, Q, H} = Non-terminal symbols

Eo = {A1, A2... An} = Terminal Symbols (activities)

P = Production rules

Petri Net Transducers (PNT) proposed by Wang and Saridis (1988) are Petri-net

realizations of the Linguistic Decision Schemata introduced by Saridis and Graham

(1984) as linguistic decision making and sequencing devices. They are defined as

6-tuples.

M =(N,E,/X,G,_,F)

where

N = (P, T, I, O) = A Petri-net with initial marking

17



= a finite input alphabet

A = a finite output; alphabet

a = a translation mapping from T x (_ U{A}) to finite sets of A" and

F C R(#) a set of final markings.

A Petri Net Transducer is depicted in Figure 6. Its input and output languages

are Petri Net Languages (PNL). In addition to its on-line decision making capability

PNT's have the potential of generating communication protocols, learning by feed-

back, ideal for the communication and control of coordinators and their dispatcher in

real time. Their architecture is given in Figure 7, and may follow a scenario suitable

for the implementation of an autonomous intelligent robot.

Figure 8 depicts the Petri-net Structure of a typical coordination structure (CS)

of an intelligent robot. This structure is a 7-tuple:

CS = (D,C,F, RD,SD, Rc.,Sc)

where

D = (Nd, _o, Ao, Gd, _d, Fd) = The PNT dispatcher

C = {C1,... C,,} = set of coordinators

c, ' '= Ac, Go, F_) = the ith PNT coordinator

F = I..J'_=,{f_, f_1, rio, f_o } = set of connection points

Ro, Rc = Receiving maps for the dispatcher and coordinators

So, Sc = Sending maps for the dispatcher and coordinators

Decision making in the coordination structure is accomplished by Task Scheduling

and Task Translation, e.g., for a given task find a an enabled t such that a(t, a), is

defined and then select the right translation string from a(t, a) for the transition t.

The sequence of events transmitted from the organization level is received by the

dispatcher which requests a world model with coordinates from a vision coordinator.
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The vision coordinator generatesappropriate databaseand upon the dispatcher's
commandcommunicatesit to the planning coordinator which set a path for the arm
manipulator. A new command from the dispatcher sendspath information to the
motion controller in terms of end points, constraint surfaceand performancecriteria.
It also initializes the force sensorand proximity sensorcontrol for grasp activities.
The vision coordinator is then switchedto a monitoring mode for navigation control,
and so on.

The PNT can be evaluatedin real-time by testing the computational complexity
of their operation which may be expresseduniformly in terms of entropy. Feed-
back information is communicatedto the coordination level from the execution level
during the execution of the applied command. Each coordinator, when accessed,
issuesa number of commandsto its associatedexecution devices(at the execution
level). Upon completion of the issuedcommandsfeedbackinformation is received
by the coordinator and is stored in the short-term memoryof the coordination level.
This information is stored in the short-term memoryof the coordination level. This
information is usedby other coordinators if necessary,and also to calculate the indi-
vidual, accruedandoverall accruedcostsrelated to the coordination level. Therefore,
the feedbackinformation from the execution to the coordination level will be called
on-line, real-time feedback information.

The performance estimate and the associated subjective probabilities are updated

after the kii-th execution of a task [(ut, xt)i, Sj] and the measurement of the estimate

of the observed cost Jij:

J,j(kij + 1) = J,j(k,j) + _(k_s+ 1)[Job,(IQ + 1) - J_j(k_j)] (23)

where

p_j(k_s+ 1) = p_s(k,,)+ 7(k_s+ 1)[_is(k_j+ 1) - p_j(k;s)]

1 Jij = min_ij = 0 elsewhere

and _/ and 3' are harmonic sequences. Convergence of this algorithm is proven in

(Saridis and Graham 1984).
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The learning processis measuredby the entropy associatedto the subjective
probabilities. If

H(M)=H(E)+H(T/E) (24)

where H(E) is the environmental uncertainty and H(T/E) is the pure translation

uncertainty. Only the latter may be reduced by learning.

4.3 The Execution Level With Entropy Measures

The cost of control at the hardware level can be expressed as an entropy which

measures the uncertainty of selecting an appropriate control to execute a task. By

selecting an optimal control, one minimizes the entropy, e.g., the uncertainty of exe-

cution. The entropy may be viewed in the respect as an energy in the original sense

of Boltzmann, as in Saridis (1988).

Optimal control theory utilizes a non-negative functional of the state of the system

x(t)egl_ the state space, and a specific control u(x,t)e_xT; f_ C _ the set of

all admissible feedback controls, to define the performance measure for some initial

conditions x0(t0), representing a generalized energy function, of the form

V(xo, to) = E{ fti' L(x,t,u(z,t))dt} (25)

where L(x, t, u(x, t)) > 0, subject to differential constraints dictated by the underlying

process

dx

d'-'t = f(z,u(x,t),w,t)x(to) = x

z = g(z,v,t)z(tl)eM ! (26)

where Xo, w(t), v(t) are random variables with associated probability densities p(Zo),

p(w(t)), p(v(t)) and M/ a maninfold in 12_. The trajectories of the system (26) are

defined for a fixed but arbitrarily selected control u(x, t) from the set of admissible

feedback controls 12,,.

In order to express the control problem in terms of an entropy function, one may

assume that the performance measure V(xo, to, u(z, t)) is distributed in 12,, according
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to the probability density p(u(x, t)) of the controls u(x, t)efl_,. The differential entropy

H(u) corresponding to the density is defined as

H(u) = - fn, p(u(x,t))lnp(u(x,t))dx

and represents the uncertainty of selecting a control u(x, t) from all possible admissible

feedback controls I2_. The optimal performance should correspond to the maximum

value of the associated density p(u(x, t)). Equivalently, the optimal control u'(x, t)

should minimize the entropy function H(u).

This is satisfied if the density function is selected to satify 3aynes' Principle of

Maximum Entropy (1956), e.g.,

p(u(x,t)) = exp{-_ - _,V(xo,to,u(x, t))} (27)

where )_ and # are normalizing constants.

It was shown by Saridis (1985b) that the expression H(u) representing the entropy

for a particular control action u(x, t) is given by

H(u) = f.p(_,_,(_,t))V(_o,t°,_,(_,t))d_
= _ +,V(_o, to,u(x,t))} (28)

This implies that the average performance measure of a feedback control problem cor-

responding to a specifically selected control, is an entropy function. The optimal con-

trol u'(x, t) that minimizes V(x, t, u(x, t)), maximizes p(x, u(x, t)), and consequently

minimizes the entropy H(u).

u'(x,t) : E{V(zo, to, U'(x,t))}

= _nfn Y(:_o,to,_,(_,tllP(_(_,t)ld_
U

(29)

This statement is the generalization of a theorem proven in (Saridis 1988) and estab-

lishes equivalent measures between information theoretic and optimal control problem

and provides the information and feedback control theories with a common measure

of performance.
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This optimal control theory designedmainly for motion control, can be imple-
mented for vision control, path planning and other sensorysystem pertinent to an
Intelligent Machine by slightly modifying the system equations and cost functions.
After all one is dealing with real-time dynamic systemswhich may be modeled by a
dynamic set of equations.

5 DISTRIBUTED MACHINE INTELLIGENT SYS-

TEMS

In the real world, distributed systems and hierarchical system co-exist in harmony.

The human organism is a typical example of this statement.

Distributed Artificial Intelligence (DAI) is a discipline concerned with treating

problems that require multiple solvers in parallel by invoking artificial intelligence

techniques (Decker 1987). When utilized to control intelligent machines working in

parallel, it can be interpreted as Distributed Machine Intelligence (DMI) where the

intelligence processing is referred to the autonomous abilities of the machines involved

as with simple hierarchically intelligent control case (Saridis 1986): This corresponds

more to the distributed problem solving process and may be thought of as composed

of two components:

Distributed Machine Intelligence:

1. Control,

2. Communications.

Distributed Control can be performed in two different ways:

1. Control by a meta level,

2. Control by majority vote.

The first method is an extension of the hierarchical approach where the coor-

dination, decision making and subtask assignment is deferred to a higher level of

intelligence imbedded in the dispatcher of the intelligent machines (see Figure 5).

The cooperative activities should be planned, scheduled and sequenced in this device

22



and communicatedcontinuously to the machines. Feedbackfrom the environment
shouldbe communicatedcontinously for the evaluation of the team work performed.

The secondmethod dealswith cooperativeapproachof machinesoperating in the
sameenvironment and performing tasksthat requireschedulingand task assignment.
Majority vote may provide the proper planning and sequencingof the various tasks
to be performedin unisonby all the intelligent machinesinvolved. The majority vote
could be taken in a poll placeequally accessedby all the machineand communicated
back to them in the appropriate sequence.

The communicationproblem playsa paramount role in distributed machineintel-
ligence. It may be performed by a large communicationnetwork in the caseof wide
spacially distributed machinesor by acomputer buswhendealingwith a tightly built
systemof devices.The main designconsiderationsof a communication system are:

1. The systemconfiguration,

2. The protocol, and

3. The treatment of uncertainty of information.

The first item dealswith the selectionof the proper structure of the network. Two
types suitable for the appropriate control categoriesare:

1. Star Connection.

2. Ring Connection.

The seconditem is essentialfor the most efficient operation of the systemand the
optimization of the information exchangeamongthe intelligent machines.The com-
puter literature containsmanysourcesof information about protocols as in Lampson,
Paul and Siegert (1981).

The third item deals with ability of the communications system to deal with
uncertain and incomplete information. The problem of reliability for accurate and
precisetransmissionand receptionof information is essential.The classicalShannon's
information theory methods are applicablehere (Shannonand Weaver,1963).

Finally, as mentioned earlier, distributed machine intelligencemay be applied to
coordinate a number of cooperating intelligent machinesor to organizea number of
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coordinators within the samemachine. In both cases,such a structure can work in
harmony with the hierarchically intelligent control structure of Saridis (1983). The
reasonis that the hierarchical stratification refers to the intelligence of the machine
and the IPDI needsonly to be generalizedfrom a vertical to a horizontal deployment.
In other words, the IPDI should be assignedto all directions of flow of knowledgeto
representall the trade-offs betweenintelligence and complexity.

6 APPLICATION TO ROBOTIC SYSTEMS

The theory of Intelligent Controls has direct application to the design of Intelligent

Robots. The IPDI provides a means of structuring hierarchically the levels of the

machine. Since for a passive task the flow of knowledge through the machine must

be constant, it assigns the highest level with the highest machine intelligence and

smallest complexity (size of data base), and the lowest level with the lowest machine

intelligence and largest complexity. Such a structure agrees with the concept of most

organizational structures encountered in human societies. Application to machine

structures is straight forward.

Even at the present time there is a large variety of applications for intelligent

machines. Automated material handling and assembly in an automated factory, au-

tomation inspection, sentries in a nuclear containment are some of the areas where

intelligent machines have and will find a great use. However, the most important ap-

plication for the author's group is the application of Intelligent Machinesto unmanned

space exploration where, because of the distance involved, autonomous anthropomor-

phis tasks must be executed and only general commands and reports of executions

may be communicated.

Such tasks are suitable for intelligent robots capable of executing anthropomor-

phic tasks in unstructured uncertain environments. They are structured uncertain

environment. They are structured usually in a human-like shape and are equipped

with vision and other tactile sensors to sense the environment, two areas to exe-

cute tasks and locomotion for appropriate mobility in the unstructured environment.

The controls of such a machine are performed according to the theory of Intelli-

gent Machines previously discussed (Saridis and Stephanou 1977), (Saridis 1983,

1985a, 1985b, 1988a), (Meystel 1985, 1986). The three levels of controls, obeying the

Principle of Increasin_ Precision with Decreasing; Intelli_;ence, are presently tested on

a testbed composed of two PUMA 600 robot arms with stereo vision and force sensing,
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with the structure of Figure 9.

Recent researchhasbeen focusedin the application of the Theory of Intelligent
Machines to design robots for autonomousmanipulation and locomotion in space.
Satellitemaintenance,constructionof the spacestation and autonomousplanet explo-
ration vehiclesare typical examples.A testbed for earth simulation of suchactivities
in spacehasbeenbuilt in the Centerfor Intelligent Robotics for SpaceExploration
at Rensselaerand graphically depicted in Figure 10.

7 CONCLUSIONS

A revision of the analytic formulation of Intelligent Machines developed by the author

and his colleagues, has been proposed in this paper. The realization of the Machine

is obtained through the application of Hierarchically Intelligent Control based on

a better understanding of the Principle of Increasing Precision (complexity) with

Decreasing Intelligence, which utilizes a three level structure. The upper level is

implemented through a Boltzmann machine capable of task planning at an abstract

level. The coordination level composed of a dispatcher and several coordinators are

implemented by Petri Net Transducers, as realization of Linguistic Decision Schemata.

Finally, the execution level may be modeled by a set dynamic system with entropy

as a cost function, unifying the evaluation various processes.

Optimality is still searched at the individual levels. Total optimization, a mathe-

matical programming problem is still to be investigated.

The application of interest to the author is presently Intelligent Machines for
unmanned space exploration.
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